
 	 	 III

The Beauty of Turtle Graphics

An illustrated Introduction

Joachim Wedekind

Joachim Wedekind:
The Beauty of Turtle Graphics. An illustrated Introduction

Author:	 Dr. Joachim Wedekind
	 Eschenweg 26
 72076 Tübingen

The present work has been carefully prepared. Nevertheless, the author accepts no
liability for the correctness of information, notes and tips, nor for any printing errors.

Website:
http://programmieren.joachim-wedekind.de/logo-classics/

2020 Tübingen
© Copyright for the complete works lies with the author
Graphic design and typesetting: Joachim Wedekind

Imprint: http://joachim-wedekind.de/impressum/

This work by Joachim Wedekind is under a Creative
Commons License 4.0: Attribution, non-commercial, no
modification. Permissions beyond this license can be
obtained from the author..

Preface
Shortly after my professional entry into teaching technology and media
didactics, I read for the first time in 1975 in an overview volume „Computer
und Unterricht“ (Eyferth et al., 1974) about the Logo project of Papert at
MIT. Considered by the authors "as one of the most remarkable attempts
of meaningful computer use in class according to its curicular and didactic
objectives", they tried to prove this by means of typical program examples.
These showed simple geometric line figures drawn with the "Turtle", a
controllable robot.

These pictures were and are typical for the use of Logo in a school context.
They can be found in early publications on Logo (the manuals for different
Logo versions and many introductory books). I was immediately attracted
by the images and the possibilities for their creation. For me, they have a
very unique aesthetic with a high recognition value in the corresponding
publications.

This book therefore focuses on typical images created with the turtle
graphic. In some examples, the proximity to works of early computer art
(which I have included as homages to the artists), but also to well-known
optical illusions (which I call "Opticals") becomes very obvious.

Only basic programming concepts that are used to generate the respective
images are briefly outlined. The book is therefore not an introduction to
programming with Logo, but rather a picture book, which may inspire you
to program these and comparable pictures yourself.

Tübingen, April 2020 Joachim Wedekind

By the way, one more thing: I apologize for the poor linguistic quality of this booklet. It is my
own translation of the German original. In some sections I used the help of DeepL or Google
Translate. Corrections and improvements are welcome.

Advertising on my own behalf: There are two books and related websites by me about
Computer art and Opticals that give programming the appropriate status:

J. Wedekind (2018). Codierte Kunst. http://digitalart.joachim-wedekind.de/about-the-book//

J. Wedekind (2019): Optische Täuschungen animieren für Dummies Junior.
http://opticals.joachim-wedekind.de/das-buch/

I II

Content
Preface	 I
Content	 III

Introduction: Logo Classics 	 1
Line Graphics	 4
Squares (I)	 10
Squares (II)	 12
Flags, spiders, swirls 	 20
Rectangles, parallelograms 	 24
pick random ...	 32
Polygons 	 42
Squiggle, squaggle & Co.	 54
Circles (I)	 62
Circles (II) 	 64
Arcs	 72
Arcs - applications with variants 	 80
Spirals 	 88
Recursive spirals	 94
Dot spirals 	 98
Arrow geometry	 104
Recursive trees 	 108
Combination of known things 	 114
Supersigns 	 144
Moiré-patterns 172
Stamping instead of drawing	 180
Outlook: Animation and Interaktion	 190

Literature	 193

 	 	 III 4

Introduction: Logo Classics
After years I rediscovered the book Mindstorms by Seymour
Papert (Papert, 1980, 1982)1. In this book he unfolds his
view of the computer as a mental tool and how children can
access this tool with the help of Logo.

Turtle graphics was introduced as a central component of
Logo in 1970. With a few basic commands it is possible to
create simple, but also complex appealing graphics 2.

„TURTLE GEOMETRY is a different style of doing geometry,
just as Euclid's axiomatic style and Descartes's analytic style
are different from one another. Euclid's is a logical style.
Descartes's is an algebraic style. Turtle geometry is a
computational style of geometry.“ (Papert, 1982, S. 55)

The creation of these images can be easily understood using code
examples3. Those who enjoy abstract-geometric graphics will find a variety
of suggestions on how to create appealing images using simple
programming technology.

 1

1 It is still worth reading, especially today, when it is considered when and in what form
computer science lessons will be introduced in schools. The original English version of the
book can be downloaded free of charge.
2 A turtle-like robot was developed for the graphic output: the Yellow Turtle (Feurzeig, 2010).
This vehicle could move and rotate, and raise and lower a pen. Lines can be drawn on a
paper underneath. The robot was later replaced by a small symbol with a direction indicator
on the screen.
3 The examples are implemented with the visual programming environment Snap!, quasi a
"granddaughter" of Logo. The graphics are interactive; their characteristics can be changed
with sliders.

For me, the approach that underlies the turtle graphics is still best
described by Seymour Papert himself in Mindstorms. Its basic principles
are presented in a compact form and illustrated in Chapter 3: Turtle
Geometry: A Mathematics Made for Learning. They will be illustrated here
with interactive examples.

Note: In order to understand the examples, it is recommended to look at
the complete code of the examples. The links to these can be found on the
website Logo Classics. A click on the program name leads directly to
the programs in the Snap! programming environment.

When Snap! is restarted, it opens with a predefined initial state: The
stage has a certain width and height, is empty and has the color white.
The turtle sits in the middle of the stage in the shape of an arrow, points
to the right and has the color black. All these properties can be easily
changed later.

The turtle can understand commands in the so-called turtle language.
These control their movement. With the command move, it moves in a
straight line in its direction of view, so it changes its position, but not its
direction. With the command turn it changes its direction of view, but not
its position.

In the example opposite the movements of the turtle are described by such
commands and thus a square is drawn:

2

 3

Line Graphics
Before the turtle can draw, its pen has to be lowered with pen down. Only
then does it leave a trace. The pen can be raised again with pen up.

Many different basic patterns are already possible with just move and turn
and pen down and pen up.

Iterations: The computer is particularly good at performing frequently
recurring, dull but necessary actions patiently and quickly. For this purpose,
Snap! includes the repeat block, whose enclosed commands are
executed as often as specified.

If the basic patterns are combined and multiplied in the repeat loops,
many attractive line graphics can already be created.

4

 5 6

 7 8

 9

Squares (I)
In many introductions to programming, the first example of a simple
sequence of commands is the sentence Hello World on the screen4. For
me, drawing a square is in a way the Hello World in the languages of the
Logo family! The square can be used to illustrate several important
concepts:

Repetitions: In the repeat block, its commands will be executed as many
times as specified, i.e. four times for the square.

Expandability and reusability: The turtle language can be expanded
through your own procedures. These command sequences can then be
used again and again. In the procedure square, the commands for
drawing the four sides of the same length and rotating the turtle by 90
degrees are combined.

10
4 see the list of Hello World programs in higher programming languages at Wikipedia

 11

Squares (II)
Variables: All kinds of data (numbers, texts, images, etc.) can be stored in
variables. The computer will find the data safely, can use them again and
again in the program and also change them.

The length of the sides is passed to the square procedure as input
parameter length. The squares can now be drawn in any desired size.

Simplification through repetitions: The reuse of procedures in repetition
loops also allows more complex figures; so below for nested squares and
diamonds, controlled via n_squares, delta and angle.

12

 13 14

nested squares

 15

diamonds

16

squares

 17 18

Opticals: Hermann-Hering Grid (grey dots)

 19

Opticals: Scintillating Grid
Flags, spiders, swirls
Reusability and location neutrality: The advantage of procedures is
their reusability in new contexts. Of course, this also applies to the square
procedure. Local neutrality is important, i.e. the return of the turtle to its
starting point with its original direction of vision.

A procedure flag_square draws the flagpole of length flagpole and then
the square with the side length length. Finally, the turtle is always moved
to the middle of the stage.

Thus, simple structures can easily be combined into more complex
structures. This applies to spiders and swirls (on the following double
page).

20

 21

flags

22

spider with offspring

 23

swirl Rectangles, parallelograms
Modifications and extensions: Procedures can be taken as a starting
point for new uses. For example, the procedure square can easily be
changed to a procedure rectangle, to which the width and height of the
rectangle are passed as values a and b, respectively:

The procedure rectangle can in turn be extended to a procedure
parallelogram if the angle beta is passed in addition to the side lengths
(the angle alpha results in the parallelogram as 180 - beta).

The parallelogram procedure now contains the initial procedures as
special cases, namely the rectangle procedure with beta = alpha = 90
and the square procedure with additional a = b!

24

 25

rectangles

26

parallelograms

 27 28

 29 30

Opticals: spatial effect through colour shades

 31

pick random ...
In the previous pictures, everything was clear and therefore predictable,
determined by the program commands. Randomness can provide for
moments of surprise in the pictures, because all characteristics of the turtle
can easily be changed randomly. The basis is the random function pick
random 1 to 10, which provides evenly distributed random numbers
between 1 and 10.

The range for the random numbers can be freely selected. With such limits,
then it is spoken of guided randomness. For example,

is used to determine the random positions of the turtle. The picture on the
top right shows accordingly the rather even distribution of points.

Chance can change everything! That affects, among other things

• the step length with move,
• the position with go to,
• the angle with turn,
• the pen thickness with set pen size to,
• or the color with set pen color to.

32

 33

Homage à Nees: Bunch of lines

34

Homage à Nees: Corner lines

 35 36

 37 38
Homage à Franke: Squares

 39
Homage à Nees: Gravel

40

 41

Polygons
The generalization of programs or procedures is the step from the
familiar to the unknown. A small change in the procedure square
makes this clear. Just by introducing a parameter n, which determines the
number of corners of a polygon, instead of squares we can draw any
regular polygon in a new procedure polygon with sides of equal length
and equal angles.

Compared to the procedure square, only the angle of rotation changes in
addition to the input values. With 360/n it is ensured that the angle sum in
the polygon always results in 360 degrees.

Interesting: In all regular polygons the turtle turns 360 degrees. Papert
(Papert, 1982, p. 76) calls this The Total Turtle Trip Theorem:

„If a Turtle takes a trip around the boundary of any area and ends up in the
state in which it started, then the sum of all turns will be 360 degrees.“

42

 43 44

nested polygons

 45 46

Opticals: Ambiguous Figure Necker Cube
(6 hexagons, angle 60)

 47 48

 49 50

 51 52

 53

Squiggle, squaggle & Co.
For the complete Total Turtle Trip Theorem there is an important
generalization. Even with open polygons, the turtle ends in the initial state
when the sum of all right and left rotations is again 360 degrees or a
multiple thereof.

Brian Harvey introduced an example with the funny
name squiggle (Harvey, 1982, p. 186 ff.). The always
same sequence of pairwise move and turn
movements can be easily and flexibly implemented with
a procedure designs and by summarizing the
movement data in a list.

Lists are fields in which numbers and/or texts, lists and
even program code can be saved and called up again.

The movement data for squiggle and two other
variants called squaggle and squoggle then result in the following lists:

With designs, similar
variants can now be easily
drawn.

But it is only through
repetition and by changing
the values for the
movements that the
actually interesting
patterns are created.

In addition there is a similar example by Hal Abelson (1983, p. 49) with the
simple name design.

54

 55 56

 57 58

 59 60

 61

Circles (I)
When drawing figures, Papert liked to let the children play turtle
themselves. He speaks of bodysyntonic learning or ego-syntonic
learning to make clear the relationship between geometric operations and
physical experience.

A prime example of this is the drawing of a circle: from the repeated
sequence of body movements "take a small step forward, turn a little" a
circle is actually formed.

From the verbal description it is only a small step to the program. A repeat
loop with the repaet block shows the expected result.

If circles of different sizes are to be drawn, this can be achieved in very
different ways. One possibility is a procedure circle, where the radius of
the circle is determined by the number of steps of the turtle:

The procedure circle is thus very similar to the procedure polygon,
whereby here the angle is kept constant at one degree.

62

 63

Circles (II)
With a little mathematics, the circles can be determined more precisely.
From the formula for the circumference and the mathematical constant
π the required step sizes of the turtle can be calculated using the radius:
U = 2 π r. This results in the procedure circle radius:

When drawing circles on paper, their position is determined with the ruler,
and their radius with the compass around the selected center. A procedure
circle araund that corresponds to this is somewhat more extensive:
• First the turtle is sent to the selected point [x,y].
• From this point it is sent with radius to a starting point on the circle and
• draws the circle from there.
• Finally, the turtle is sent back to the starting point.

64

 65 66

 67 68

 69 70

lines and circles

Homage à Delaunay: Rhythm

 71

Homage à Calder

Arcs
Circles are the prime example of the relationship between geometric
operations and physical experience, as described by Papert. They can also
be used to show that omission can create new diversity. Thus circles
can be turned into arcs by limiting steps and rotations.

As with circles, there are again several ways to create them, starting from
the center point.

Drawing with a selected center point is also obvious for circular arcs. A
distinction must be made between arcs that start from a point and arcs
that go around a point. These procedures are now somewhat more
extensive:

By combining them many new interesting figures are created.

72

 73 74

arcs 90o

 75

arcs 30o < random < 60o

76

 77 78

arcs 180o

 79

shifted arcs 180o

Arcs - applications with variations
Arcs can be used as the basis for more complex figures. Leaves can be
drawn very easily, which in turn can be combined into flowers.

With the fill command, colored filled petals can also be created and used
in appropriate combinations.

Further variations are possible, if one distinguishes between right- and
left-turning arcs (which internally differ only by the commands turn 1
degrees or turn -1 degrees). Quite different waves can result.

80

 81

leaf & flower (arcs 120o)

waves (arcs 45o < variations < 180o)

82

flowers (arcs 120o)

 83 84

waves (arcs 120o < variations < 200o)

volcano (arcs 45o < variations < 120o)

 85

amoeba (arcs 45o < variants < 120o)

86

Homage à Nees: Arcs (arcs 90o - 360o)

 87

Homage à Sýkora: Lines (arcs 30o - 120o)

Spirals
If in the regular polygons the lengths of the sides and the angles between
the sides become variable, we get spirals. There are several possibilities
for this, which result in interesting differences.

Similar to the procedure polygon, the turtle walks a distance and rotates
by an angle after each step. However, in the new procedure spiral, the
distance is increased by a factor delta d each time (upper right picture). So
that this procedure does not continue endlessly, a limit g must be set for
the distance. If the condition l > g returns the value true, this limit is
exceeded and the procedure is aborted.

Instead of the distance, the angle of rotation can of course also be
increased. To do this, change the command change l by d to change w
by d.

The result is then a completely different one (picture below right). The curve
is a clothoid (also known as Cornu-Spiral oder Euler-Spiral), where the
curvature grows linearly with the path length.

88

 89 90

 91 92

 93

Recursive spirals
Recursion as a form of repetition is often introduced with spirals.
Recursive procedures can contain one or more self-calls. The principle is
particularly powerful because (also modified) parameters can be passed in
this call.

A limit g must be specified so that the calls do not continue indefinitely. If
the corresponding condition returns the value true, this limit is exceeded
and the calls therefor are ended. Depending on the location of the self call
within the procedure, three types of recursion are distinguished:

The process is easy to follow on the spirals.

With the tail recursion call (top left image), the
procedure is drawn first and then called again.

With an initial recursion (top right image), the
procedure is first called again and then drawn.
Therefore, only after the termination criterion has
been met, the lines are drawn during the "way
back" with the length accumulated up to that point.

94

initial recursion: centric recursion tail recursive:

• termination condition
• self-call of the procedure
• instruction(s)

• termination condition
• instruction(s)
• self-call of the procedure
• instruction(s)

• termination condition
• instruction(s)
• self-call of the procedure

 95 96

 97

Dot spirals
The basic structure of spirals often becomes much more visible if not only
the lines between the spiral points are drawn, but their starting (and end)
points.

Dots of a certain pen thickness are drawn by not telling the turtle the
number of steps for the move steps command and thereby "stepping on
the spot" as it were. A yellow dot with a thickness of 60 then arises as
follows:

Small changes in the characteristics of the spirals, such as the length, the
angle or the change delta, can cause large changes in the point
structures. If this is combined with random changes, completely different
structures are created again.

98

 99 100

 101 102

 103

Arrow geometry
The turtle also has sensors. This allows different values to be measured
and further processed:

• distance to center/mouse-pointer/object provides the distance (in
pixels) from the current position of the turtle to the center of the image,
to the mouse pointer or to another object to be specified.

• direction to center/mouse-pointer/object provides the direction (in
degrees) from the current position of the turtle to the center of the
image, to the mouse pointer or to another object to be specified.

• In the same way, further properties can be recognized and measured.
For example, hue, saturation ... at delivers the color values below the
mouse pointer or another object to be specified.

This can be used to create spirals in a completely different way; this is
called arrow geometry.

Starting position is a point on a circle around a given center (blue in the
picture on the top right). For this point, then the tangent of the circle can
be drawn (perpendicular to the distance line to the centre). On this tangent
the turtle is moved by length. At its new position, the tangent is drawn
again and the turtle is moved by length + delta.

104

 105 106

 107

Recursive Trees
Drawing trees is a popular example of the use of recursion in turtle
graphics. One reason for this is that when drawing a tree, there are always
recurring sequences:

1. First the trunk is drawn.
2. A left branch is drawn at a branching point.
3. A right branch is drawn at the same junction.
4. Important: at the end the turtle returns to the

starting point.

If the branches are each used as the starting
point for further ramifications, a complex
branching structure is created, i.e. the tree with
branches.

In the recursive version, therefore,	
move length steps when drawing
the branches is replaced by the
recursive call tree_recursive
length depth. In the figure on the
right the results for a depth of 1 to 4
are shown. If depth = 0 returns the
value true, drawing is aborted.

Also the length and the angle at
which the branches branch off can
be changed depending on the
depth. Combined with line
thickness and colour, the results
then resemble very real trees of
certain species. Other values result
in abstract figures with area-filling
patterns.

108

 109 110

recursive tree

 111

recursive group of trees

112

recursive trees

 113

Combination of known things
With the programs and procedures shown so far, points, lines, polygons,
circles, arcs, spirals, and recursive trees could be drawn. Thus, a powerful
figure construction kit is already available. In a further step these
elements can be combined with each other5. This results in new structures
again:

1. lines on circles
2. polygons on circles
3. polygon combinations
4. circle combinations
5. recursive triangles, squares, polygons
6. recursive polygon combinations
7. recursive circles

114
5 So since known elements are used, I will not print snippets of code in this section.

 115

1 2

3

2

3 3

44 4

5

76

5 5

7

116

lines on circles

 117 118

 119 120

squares on a circle

 121 122

rectangles on a circle

 123

circles on a circle

124

lines on circles

 125 126

Homage à Riley: Blaze

 127 128

polygon combinations

 129 130

polygon combinations

 131 132

circle combinations

 133 134

recursive tringles / squares

 135 136

recursive tringles: Peano

 137

recursive tringles: Koch

138

recursive hexagon

 139

recursive dodecagon

140

recursive polygon combinations

 141 142

recursive circles

 143

Supersigns
The principle of the following examples is the rotation and mirroring of
lines, arcs or polygons. This way new "supersigns" can be created. By this
we mean perceived entireties composed of the elementary signs.

Then, by repeating and combining the new supersigns in a grid,
interesting endless patterns can be created. Such periodic repetitions are
often found in decorative patterns.

For the following applications, four similar graphic elements are created:
down_left, upper_left, down_right, and upper_right:

1. three corners
2. (diagonal) lines
3. triangles
4. Escher triangles 6

5. bars
6. arcs

The procedures for the graphic elements are internally always structured in
the same way. The example down_left shows that simple commands for
moving the turtle are sufficient.

Make sure that the
turtle is back at the
starting point after
drawing.

The elements can then be repeated
systematically or randomly within
loops.

144

6 The example can be found in one of his early workbooks, in which he experimented with
such patterns (Schattschneider, 1990, p. 45).

 145

3

2

1

4

5

6

2

1

3

4

5

6

146

three corners

 147 148

 149 150

diagonal lines

 151 152

 153 154

triangles

 155 156

 157 158

Escher-triangles

 159 160

 161 162

bars

 163 164

 165 166

arcs

 167 168

 169 170

 171

Text hier eingeben Moiré-patterns
By superimposing the graphic elements already known (lines, circles,
points), surprising optical effects can be achieved (this is called the Moiré
effect). Their creation is very simple7.

The procedure is the same throughout (the blue dot in the graphics on the
right always marks the center of the image):

• A first basic pattern is created with an element from the figure
construction kit. This pattern forms the background (in the picture on
the right, lines, circles, points and again lines from top to bottom).

• Depending on the desired effect, one or more additional patterns can
be created and superimposed on the first pattern.

• The second pattern is usually slightly offset and/or rotated compared to
the first one (in the picture on the right in the middle, lines, circles,
points and again circles, slightly shifted from top to bottom).

The results can be found in the image on the right in the third column on
the far right.

Moiré patterns are important in various technical areas. But they have also
been used in painting since Op-Art.

The combination of different shapes in different colours and sizes often
produces surprising results 8.

172

7 Static images are already suitable for presentation; however, they are particularly appealing
to viewers if they run as program-controlled animation or, ideally, can be influenced
interactively themselves (by manually shifting the patterns).

8 With the moiré index, Carsten Nicolai has presented an entire book in which he carries out
precisely such systematic transformations of basic elements in grids. Pretty much anything
can be recoded according to the principle presented here.

 173 174

circles

 175

points

176

squares and lines

 177

arcs

178

Homage à Biasi: Lot Nr. 639

 179

Homage à Oxenaar: 45 Cent Stamp

Stamping instead of drawing
There are useful functions in the programming environment Snap! that can
greatly simplify the drawing of complex graphics. In all previous projects,
for example, the graphic elements were created by moving the turtle with
the pencil down. However, it is also possible to make the turtle - in the form
of its costume - into a graphic element itself.

For each graphic created, a context menu can be opened by right-
clicking on the stage, in which such a costume is created from the
graphic by selecting the option pen trails.

A costume list can be found in the program area under the tab Costumes.

The Looks category provides commands for customizing the
costumes.The command switch to costume replaces the current turtle
costume with the selected costume. next costume replaces the current
costume with the next costume from the Costumes list. By set size to x
%, the size of the costume can be changed in percent, with change size
by x by x pixels.

The important thing now is that with stamp the selected costume can be
"stamped" at the current position of the turtle. It remains there, even if the
turtle is moved further.

This makes it possible to multiply complex graphics more easily and
significantly faster than with the corresponding procedures in
repeat-loops. The following pictures can show this as an example.

180

 181 182

Homage à Mohr: P-105

squares

 183

lines

Opticals: Ehrenstein-illusion
184

20 23

lines and points

Homage à Le Parc: Rotations

 185
Homage à Le Parc: Dots

186Homage à Rickards: Stack of Circles

circles

 187

rectangles

188

arcs

 189Homage à Steinkamp: Daisy Bell

Outlook: Animation and Interaction
You can find the complete code of the examples on the website Logo
Classics. There, a click on the program name leads directly to the
programs in the Snap! programming environment.

Some of the programs differ somewhat from the sequence shown in the
text. This is because I have prepared the programs - as far as reasonable -
for animation. Furthermore these programs are interactive, i.e. they can be
controlled very easily by the user. The procedure is always the same and
easy to understand:

The animation principle is very simple and corresponds to the traditional
stop-motion technique. Each image is drawn by the computer. The current
image is continuously replaced by a new image with updated properties
(such as color, length, angle, etc.). So it is the principle of paint - wipe -
paint ... If this happens fast enough, we get a flicker-free, animated image.

The animation takes place in an endless loop (forever).
First the stage is erased (clear), followed by the
commands required to draw the picture. The warp
command is necessary because it ensures that the
graphic output only takes place when the image internally
is completely drawn. This makes the image output more
fluid!

Sliders are provided for the characteristic values so that
the viewers can control the images interactively. If values
are changed, the image is updated with these values
during the next repeat loop. To avoid undesired effects,
sensible minimum and maximum values should be
preset for the parameters.

In the concrete example on the
right-hand side, the number of
corners and their side length are
set dynamically for the polygons
(which of course can only be
displayed statically here).

190

 191 192

Literature
Abelson, H. (1982). Logo for the Apple][. New York: McGraw-Hill.

Eyferth, K., Fischer, K., Kling, U., Korte, W., Laubsch, J., Löthe, H., Schmidt, R.,
Schulte, H. & Werkhofer, K. (1974). Computer im Unterricht. Formen, Erfolge und
Grenzen einer Lerntechnologie in der Schule. Stuttgart: Klett.

Feurzeig, W. (2010). Toward a Culture of Creativity: A Personal Perspective on
Logo’s Early Years and Ongoing Potential. International Journal of Computers for
Mathematical Learning, Vol. 15, 3, pp. 257-265.

Harvey, B. (1997). Computer Science Logo Style. V. 1: Symbolic Computing.
Cambridge: MIT Press. (Download des Buches:
https://people.eecs.berkeley.edu/~bh/v1-toc2.html)

Nicolai, C. (2010). moiré index. Berlin: Die Gestalten Verlag.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York:
Basic Books. (Download:
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf)

Schattschneider, D. (1990). Visions of Symmetry. New York: Freeman and
Company,

Photo credits:

Book cover Mindstorms (p. 1): Photo J. Wedekind

Floor turtle (p. 1):
http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-
marvin-minsky-et-al-american/

All other pictures are screenshots from the respective programs or graphics
generated with them.

 193

