
Recoding & Remixing ComputerArt
Mes dames et messieurs, je suis très heureux de vous
présenter aujourd'hui mon petit projet pour la
programmation de l'art informatique. Mais je peux vous
rassurer: le reste de mon report je vais tenir dans la
langue de la conférence …

My first slide is an old slide. This was the last slide of
my Teach-Meet-Contribution at the Scratch2015
conference in Amsterdam. There I was so careless to
announce what I was planning to do about
ComputerArt. Today I would like to tell you what I have
done so far.

I have to notice in advance that I am not a computer scientist and I am not an
artist. I'm just a retired educational technologist with a growing interest in
ComputerArt and its programming. And in the meantime I have learned so
much about both thematic areas that I decided to share my experiences.

In my presentation you will hear about:
What is ComputerArt?
Why Recoding & Remixing ComputerArt
What are the Graphic Elements & Programming
Concepts - and a Toolbox

I will finish with some remarks why I have chosen Snap!
and of course also this presentation will have a last slide Outlook,
announcing what I am planning from now on …

BTW, nearly all graphics shown in this presentation are recodings of typical
works of the pioneers of early ComputerArt and as such a tribute (homage) to
those pioneers.

What is Computerart?

This is the definition from wikipedia: Computer art is any
art in which computers play a role in production or
display of the artwork.

The definition applies, on the one hand, to the software, that are the
programs with which the data to be displayed are generated, on the other
hand, the hardware, that is the computers on which the programs are running
and the output devices with which the data are displayed as perceptible
artifacts.

In our context, however, it is almost more important that
ComputerArt is also a direction, a genre in art, that
lasted from 1965 to about 1980. The software ran on
mainframe computers and the results were output on
plotters. For example the Zuse Graphomat Z 64 was the
plotter of choice for the German computer artists.

After a short flowering period of the said 15 years, ComputerArt disappeared
again from the scene. For some years, however, interest has reawakened
and its role as precursor and pioneer of modern media art, characterized by
multimediality and interactivity, is now recognized.

Why did I start Recoding & Remixing ComputerArt?

At my retirement I decided to pick up two old hobbies
again: to do programming and to deal with art.

As an educational technologist I got to know very early
the programming language Logo. I did my first
programming with it using MIT Logo for the Apple II,
BTW an already amazingly powerful version of Logo.

For my Logo-revival I was looking for a suitable actual
Logo-version and found it with ACS Logo for the Apple
Macintosh. The first result of my efforts was a booklet,
Vol. 1 on Programming Interactive Graphics. You can
download it from my website, but I have to warn you: it
is written in German.

I have stopped Vol. 2 only half-finished, because now the art came into play.

At that time my daughter studied and did her master's
thesis at Frieder Nake in Bremen. As she told me, he
was one of the pioneers of the so-called ComputerArt
(which I had only known casually before) and so I got
to know the pictures from this period of art history.
These are some examples.

I found the similarity of these images to typical pictures
made with the turtle graphic of Logo quite amazing. I
thought, to reprogram early ComputerArt with Logo,
should actually be relatively simple - and so my
interest in programming merged with my interest in art.

The just mentioned Frieder Nake has characterized
this twofold approach in brief and to the point:

The digital image exists as a double: the surface,
which is visible for humans and the subface, which is
computable by software.

My project to recode and remix such pictures can be considered as a trial to
treat the surface and the subface of the digital images equally important.

Of course I am not the first nor the only one to recode
and to remix ComputerArt or other art genres. Shortly
after the end of the first flowering period of
ComputerArt, some books appeared, intended to
introduce into the reconstruction of this art direction.
For example, Schneeberger used a FORTRAN-library
to produce his graphics, Wilson used BASIC, which
was available on most microcomputers at that time.

The latest efforts to make the historical works of
ComputerArt accessible can be found on the net.

The ReCode Project has set itself the task "to preserve
computer art by translating it into a modern
programming language“ (which is Processing).

The project recodeArt concentrates in a similar way on the work of Reiner
Schneeberger. Here too, the implementation is carried out with Processing.

Both projects contribute to the preservation of digital art.

Also in the Explore-section on the Scratch Website you
can find various relevant collections, for example
studios on Computer Art, on Digital Art or Selim Tezel’s
Art Projects, as well as collections of projects with
Mondrian-like or Riley-like paintings.

What is ComputerArt?

Ok, the definition of ComputerArt has already been introduced. Now its time
to name some typical properties.

My procedure was as follows: First I tried to find as
many examples as possible. This was not always easy
because the documentation of ComputerArt is very
sparse and it is seldom object of a museum’s collection.

What I did with my still growing collection was as follows:

• The analysis, which patterns and structures are characteristically for the
images,

• the compilation of a compendium of the graphic elements used (like points,
lines or more complex structures),

• the analysis of whether and which recurrent patterns are recognizable,
• and the analysis of random deviations of forms, number of elements and

the arrangement of objects.

By the way, this analytical approach has changed my view of the works of
modern art as a whole: in the stylistic directions of concept art, suprematism,
and especially geometric abstraction, very often series of recurring patterns
and structures are found, tempting to reconstruct them algorithmically.

You have seen some examples of ComputerArt already on the preceding
slides. On this slide there are further very typical examples by some of the
pioneers: Michael Noll, Georg Nees and Vera Molnar.

Graphic Elements

They illustrate almost completely the list of typical graphical elements which
can be found in early ComputerArt:

• black & white (to plot with colors was awkward to
handle at that time)

• the use of lines as well as line hatching
• The use of squares, polygons, circles, and curves

Characteristics

There is also a set of structural characteristics of those
works:

• the use of the named simple basic elements
• the repetition of these elements
• the variation of these elements
• and random values for selected image properties

Course Concept

The next step was to develop a syllabus or rather a
course based on those graphical elements and
structural characteristics and to combine them with
Computational Thinking Practices, like

• Analyzing Problems and Artifacts (that is in our case
the analysis of examples of early ComputerArt)

• Abstracting (that is what we did with the description of structural
characteristics of early ComputerArt)

• Algorithms (which we have to formulate for the recoding of an example)
• Creating Computational Artifacts (that is to translate the algorithms into

programs which produce the desired graphics)

I have tried to put all this together and the result is (or
will be, to be more precisely) the book „Coded Art“. I
am a great advocate of visual coding, therefor the
language of my choice was Snap! (but probably 95%
of my examples can also be realized with Scratch).

I have to insert at this point that my addressees are - not only but mainly -
older people. Not least because of that I have placed great value on
introducing all language elements in the case they are required for realizing a
concrete project and thus avoiding „learning ahead“. At the end I was
astonished myself that this was possible from the early beginning.
To illustrate that, I want to show you the first exemplary steps:

Graphic Elements & Programming Concepts

In all projects graphics will be produced. Of course we
need as an indispensable basis a set of turtle graphics
commands. Fortunately these are very intuitive with its
natural geometry. And of course it is necessary to bring the
commands in a meaningful order of steps (sequencing).

The first recoding of a work of an early computer artist (in
this case Rhythms by Erwin Steller), in addition to the turtle
graphics commands needs an iteration (repeating a series
of instructions). And that is actually all you need for it.

Our second example - by Roger Vilder - is made of
a lot of rectangles. This calls for simplification.
Therefore, variables and procedures are introduced
at this point. With this generalization it is easy to
generate Vilders variations on 9 squares.

The third example is Bridget Rileys Movement in
Squares, showing an optical illusion. To achieve
this, in addition to the previous commands now
control structures and conditional statements are
required. Thus It is possible to define the
boundaries at which the rectangles change the
increase and decrease of their width.

And that is really everything you need up to this point.

In a similar way further concepts are introduced, like randomness,
recursion, lists, event handling, messaging, cloning etc.

And when something is missing, we are able to add it by writing a new
procedure.

In our case a special graphic library is added. This library includes
procedures for

• different point shapes

• procedures for different lines

• and procedures for different arcs and circles.

Recoding & Remixing

Equipped with this toolbox, a wide range of examples
of early ComputerArt now can be recoded & remixed.
The remixing can affect structures (for example in the
case of Nees), colors and random distributions (at
Struycken), shapes and colors (at Sýkora) or number of
elements and colors (as in the case of Molnar). The
range of possibilities is nearly limitless.

Multimedia for All!

We have seen earlier the characteristics and
associated with them the limited possibilities of early
ComputerArt, mostly due to technical restrictions of the
available hard- and software. The rapid disappearance
of ComputerArt certainly can be ascribed also to this.

But these restrictions no longer apply. Today there is color with the highest
resolution, interactivity through a variety of input options, advanced controls
and much more.

This is why static images for one of the pioneers are
no longer at the height of time.

Through interactive elements, through sensors and
feedback, the viewers are included in the work of art:
they become contributors. And such objects and
installations can be realized with the presented
means.

There have been rare animations already in early
ComputerArt (as in this example of van Weeghel), but
nowadays they are almost indispensable in
multimedia installations.

The control by the viewer can be carried out in the
simplest case by inputting values within the program.
In such a case the viewer must have access to parts
of the code in order to change the inputs.

Far more flexible is the use of microcontrollers, like the
BBC MicroBit, Here I have made with it kind of a tiny
game console. Using the buttons, motion sensors and
accelerometer of the controller board, the various
attributes of the animation can be controlled.

My hope is. that I have shown that without greater difficulties interactive
installations are possible now for really everybody. In my experience, not only
playful applications can be created this way but also serious art objects of
high quality, which can even be shown in exhibitions and multimedia festivals.

Why Snap! ?

As I said, most of the projects can also be realized
with Scratch. But some features and attributes of
Snap! can make life easier and improve the results.
That was important for me because I needed really
big pictures for exhibitions and interactive exhibits at
festivals. At such events for example standalone executables (built with
Snapp!) are extremely helpful.

Last but not least, without the help and the enthusiasm of Jens I probably
would not have started my project on recoding & remixing ComputerArt.
Special thanks to you, Jens!

Outlook

I come to my last slide. Referring to my Scratch 2015
contribution, I can show two results: There is now my
website Digital Art, including the Digital Art Gallery,
which is even in English. The book on Coding Art is
nearly finished.

I hope there will be an english version at some time.
But I already have a second book (with a similar
approach) as a work in progress.

So I'm curious myself what I can report at the next
conference ;-)

