
Snap!shot 2020 12th December 2020

presented by Joachim Wedekind

Almost exactly fifty-five years ago, there was the first exhibition of 
Computer Art. The artists (who, by the way, did not understand or 
describe themselves as artists!) were mathematicians (like Frieder 
Nake), engineers (like Georg Nees), physicists (like Michael Noll) or 
computer scientists (like Kenneth Knowlton). This is not surprising, 
because the computers of the time had to be programmed with 
FORTRAN, with ALGOL or even in machine language in order to output 
the images on the first plotters. The range of skills required was 
therefore very technical in the early days.

What about today, when algorithmic 
art or generative art are the 
successors of computer art and can 
manifest themselves in multimedia, 
in animated and interactive 
installations (like in the example 
shown here: Flow, interactive exhibit 
by Karl Sims, 2018)?



There are now separate degree 
programmes for media art / digital 
media / generative art. These 
training courses for media artists 
include a high proportion of basic IT 
knowledge and technical 
introductions to the corresponding 
tools.

As an example, a quote from the University of Applied Arts in Vienna, the 
Digital Art programme: It is about opening up new fields for art and 
artistic practice through the use of information technology (hardware / 
software) ... as well as the application, via algorithms, sensors, robots 
and new methods of image creation.

Today there are even special programming environments specifically 
aimed at artists and designers: Processing (which is the absolute market 
leader), Touchdesigner, NodeBox, Pure Data, to name just the best 
known.

So if you come from the artistic side (like me), you will face considerable 
barriers to entry. The tools mentioned are quite complex (which is of 
course also due to their great power) and have a steep learning curve.

An interim conclusion could therefore be: It takes a good knowledge of 
computer science and technology to create digital, generative art.

Fortunately, I didn't let myself be deterred 
from getting into computer art. And luckily 
with Snap! I have found a great tool that is 
not only suitable for beginners but also for 
ambitious projects.



For anyone who, like me, started with the recoding & remixing of early 
computer art, very basic concepts are enough at first - like repetition, 
variables or dealing with controlled chance.

Here is such an example. Horst Bartnig (o.T., 
1985) is a German representative of Concrete 
Art. He worked intensively on relationships 
between simple geometric shapes. His work 
with the computer allowed him the experimental 
implementation of the rules he defined. This 
example (from 1985) combines circles with two 
lines each. The result almost resembles a wall 
with world clocks.

The recoding of this example is actually very 
simple: Beside commands to move the turtle 
(MOTION), the concepts of LOOPS and 
VARIABLES are sufficient here.

It made sense for me to turn this into an 
interactive installation. The viewers should be 
able to influence the behaviour of the system 
themselves.

Let's take first the possibility of controlling the 
speed of the rotation of the pointers, preferably 
separately for the two pointers:

The controlling should be done via the horizontal 
and vertical movements of the mouse.

The result should then look like an endless rotation. Down left the speed 
is zero. Upwards it increases for the first pointer, to the right it increases 
for the second pointer.

The traditional animation method, that is the 
stop motion technique, is unfortunately not 
suitable for this. With the necessary sensor 
queries, the program would be bloated and the 
process would slow down considerably.

animation interaction



Luckily, I had learned something about the Big 
Ideas in CS and Programming in the Beauty and 
Joy of Computing course. From this I learned 
that it would be better to work with objects in this 
case. In Snap! I have sprites and clones 
available for this.

Without going into detail, it should only be 
mentioned here, that the pointers are cloned and then given specific 
properties. But they can also react to global changes.

So I have to admit: As an artist, I need to know quite a lot about 
programming concepts. If only because if I want to know whether and 
how I can achieve something. Then I have to know the possibilities and 
limits of my tools! Otherwise I easily overestimate or underestimate what 
is actually feasible.

So I should of course be happy that there are initiatives to add an A to 
the STEM approach in school. 

Behind this is the demand to integrate art 
into the teaching of science, technology, 
engineering and math. In principle, this is a 
good approach. However, I get sometimes 
annoyed when I all too often find simple 
random graphics with lines, dots, squares or 
other geometric objects as concrete 
examples and then people already start 
talking about computer art.

STEM

STEAM

Painting with the Fingers - Exhibit with 
an interactive table, 28th November 2019, 
IWM, Tübingen



For me, this requires an intensive examination of models and examples 
from art history. So the A in STEAM needs careful design. Not an 
alternative, but an important addition, in my opinion, is therefor the 
integration of the “big ideas“ of Computer Science and Programming into 
the subject of art.

This can lead to exciting projects with surprising results that demonstrate 
the power of these Big Ideas in meaningful applications. At the same 
time, thus can be shown that the acquisition of solid computer science 
skills is indeed a worthwhile undertaking for artists.


