
Joachim Wedekind

Tübingen

Programming for All?!

A problem-based approach.

Introduction
If the motto „Programming for All!“ is taken seriously, it is not only children and
adolescents who should become digitally competent. Especially adults whose school days
did not include computers and the internet should acquire these competences, not only in
order to understand their children's school material, but also in order to be able themselves to
act competently even in a digitally influenced society.

These addressees are usually not very interested in the typical (mathematically and
informatically influenced) introductory examples of school teaching. For these addressees, I
present a curriculum that covers important basic concepts of informatics and programming -
orientated towards working on motivating problems. Some examples will be presented in
more detail: Coded Art, Animated Optical Illusions, and Logo Classics.

Three lead questions
Programming for everyone! At first, that sounds very general and today it is no more very
original to start with the remark that digitization now affects all areas of life, our everyday
life, our work and our social life. But it gets quite controversial and exciting when we ask
ourselves how people are prepared for these changes in their world.

There are two main questions - at least as far as I follow the discussion in Germany:

1. The first question is: What should actually be taught? Are these the basics of computer
science or is it media literacy? And should they be taught in a separate subject computer
science or integrated with all subjects?

2. Just as controversial is the second question: When should it all start. A few are in favor of
the kindergarten, some for elementary schools and most for secondary schools. A few even
want to keep the school completely free of them.

3. But for me, a 3rd question also arises. How do we reach all those who have already left
behind them their school and training phase, but who lack such basic education (in fact, this
is by far the largest of all target groups)?

A curriculum for adults
For some time now, I have been engaged in working with older people and helping them
with their problems with digitization. A part of this group also would like to understand their
digital environment. That's why I started a search, focussing on computer science, for
suitable concepts and materials that could cover the corresponding basics.

Because computer science lessons should not be oriented towards short-term developments,
there are several attempts to define the central concepts of computer science. Zendler &
Spannagel (2006) for example tried to determine them empirically by interviewing experts.

One of their results has been, that the importance of the content concepts are judged quite
differently, but with an outstanding position of the concept algorithm. In the process
concepts on the other hand, analyzing and problem posing and problem solving clearly
dominate.

Overall, this is a strongly academic viewpoint. So in addition, I also looked for concrete
learning materials. Unfortunately, the usual offers rarely help.

- Books as Introductions to computer science or programming are usually aimed at
students (e.g. Brookshear & Brylow, 2014).

- Some books address specifically adults and the elderly. But they are mostly limited
to pure applications(e.g. Ewin, 2017).

- Books for children, on the other hand, usually focus on games, which is not
necessarily interesting and suitable for older people (e.g. Briggs, 2012).

- Then there is adult education, especially by the Volkshochschulen (I'm not sure if
in other countries the so-called „folk high schools“ are the correct counterpart to
it). At least the Volkshochschulen in my surrounding area only offer application
trainings.

- Then, of course, online courses are still to be considered. The offer is extremely
varied and confusing, but also here offers for students dominate (an interesting
exception is the course „Informatik für Einsteiger (2019 edition)“, Modrow, 2018).

Above all, I have missed the orientation towards personal interests of the target group. How
necessary this is was already formulated by Brian Harvey years ago in the foreword to his
very special Logo books (Harvey, 1997, p. xii):

„See, the wonderful thing about computer programming is that it is fun, perhaps not for
everyone, but for very many people. The bad news is that the curricula tend to be imitations
of what is taught to beginning undergraduate computer science majors, and I think that’s
too rigid a starting point for independent learners. The ideas of computer science are a
means to the end of getting computers to do what you want.“

This statement is in accordance with my experience that it is more important for our
addressees to apply the computer science content in the areas they are actually interested in.
It is no surprise then that Brian is partly responsible for the concept of the computer science
course bjc - the Beauty and Joy of Computing course - to which I owe many ideas for my
own concept.

Big Ideas: Things to learn Computational Thinking Practices:

Things to do
Creativity
Abstraction Connecting Computing
Data and Information Creating Computational Artifacts
Algorithms Abstracting
Programming Analyzing Problems and Artifacs
The Internet Communicating
Global Impact Collaborating

Table 1: Seven „Big Ideas“ and six „Computational Thinking Practices“

The curriculum framework of the course is organized around seven "Big Ideas" and six
"Computational Thinking Practices“ (AP Computer Science Principles, 2017, pp. 9-34; see

also Grabowski & Nake, 2019). Naturally there are strong overlaps. Abstraction is the idea,
Abstracting is the practice etc. According to the authors Creating is by far the most
important of the Practices, and the most important artifacts are computer programs!

For me it was very helpful that the authors also mention the big ideas of programming. Some
are listed here:

- Variables and Scope
- Iteration
- Lists
- Parallelism
- Event Handling
- Procedures (Commands and Reporters)
- Recursion
- Functions and Lists as First Class Data

Learning to program then means applying these concepts properly in the respective context.
As an interim goal, it remains to be noted that it will be a question of connecting personal
interests with learning and applying those "Big Ideas“. Therefore, in terms of Papert's
constructionism, it is the use of the computer or digital tools in general to support design
processes.

A dedicated constructionistic-psychological approach „learning by design“ was presented by
Lehrer, Erickson & Connell (1994). They name four central types of cognitive activity in
design, namely planning of a product, implementing the design idea, rating and revising the
product. My approach is based on these three points:

1. The meaningful artifacts will be computer graphics.
2. Any new idea is introduced and implemented with a specific graphic.
3. The design process as such consists of the recoding & remixing of meaningful

examples.

Three examples
On this basis, I would like to concretise the concept using three examples and show what
results can be achieved with it. Let's start with the first point, the „meaningful artifacts“.
Today the influence of digital media on the production and representation of graphic
elements is enormous. It is therefore obvious to choose graphics as the topic of introduction
to programming.

I personally love graphics, especially abstract geometric graphics. That's why for me the
creation of graphics is a very central and motivating application of the computer. Currently I
am working on three different such topics:

The first is Logo Classics: Turtle graphics is an essential part of Logo since its beginnings.
In early publications (like handbooks or introductory books) you can always find very
similar graphics that have their own aesthetics. I am using step by step the „big ideas“ to
build up a collection of those graphics. Unlike the original ones, all examples here are
animated and interactive.

The same applies to my second topic, Computer Art or more general Digital Art. Computer
Art is any art in which computers play a role in the production or the display of the artwork.
Here, too, we go beyond static models by animating them and control them interactively.

The third field of application are optical illusions. Again, the unique feature are the
interactively controlled animations.

The second point in my concept is absolutely central: Each idea is presented with a graphic
example, which only requires the introduction of this one new idea.

As in all projects graphics will be produced, a prerequisite for all graphics is then naturally a
set of turtle graphics commands, like move or turn. Fortunately these are very intuitive with
its natural geometry, which Seymour Papert called "body syntonic" (Papert, 1980, p. 63) -
and that works quite well even with adults! So that's the starting point for any imlementation.

Animated and interactive projects
A first simple example is the Oppel-Kundt-illusion: A line with transverse strokes seem to
appear longer than a line of the same length without such transverse strokes. For this
graphic, in addition to the graphics commands, it really only needs repeat loops.

Figure 1: Oppel-Kundt-illusion (right) and code snippet with loop and variables (left)

Characteristic of algorithmic images in general is the precise, rule-guided arrangement of
basic elements. The single picture is therefore always a copy of a "class" of many more
comparable pictures (Grabowski & Nake, 2019, p. 85). The programs should therefore be as
flexible and interactive controllable as possible. To this end, variables can be introduced (as
shown in the example).

If this approach is continued consistently, this results in a coherent overall concept almost by
itself. Table 2 shows an incomplete compilation of the „new ideas“ and the related graphic
examples.

Table 2: Examples for „One idea – One Product“

It is possible with the concept of iteration alone to produce the circular lines (Logo Classics),
the Oppel-Kundt- illusion (Opticals) or the picture Rhythms as an homage to Erwin Steller
(Digital Art). In the same way, the use of other concepts will be successively introduced
using concrete images. In the case of the Logo Classics you need procedures and variables
for the nested polygons or lists in the case of repeated open polygons (Harvey, 1997, pp.
186).

The third point in my concept is learning by design or rather recoding and remixing. You
remember? It is the planning, implementing, rating and revising a design idea. The general
rule is: Think first, code second!

For me, the following procedure has proven to be successful:

- first determine the required graphical elements
- which ones are to be animated
- and finally, which parameters of the graphics should the viewers be able to change

In the first step, we can follow the swiss artist Ursus Wehrli (2003), who started the project
tidying up art. He has inspired many teachers to open up access to works of art and art
movements in this way in art lessons.

Figure 2: Modified Café Wall illusion (left) and required image elements (right)

In the same way we can analyze our image templates and determine the required image
elements. The example in Figure 2 shows a modified Café Wall illusion by Akiyoshi
Kitaoka. He is a psychologist, who is world-famous for his novel optical illusions. We see
that we only need black and blue lines and a lot of chessboard patterns in black and white. It
should be possible that the viewer can choose the thickness and the color of the lines
themselves (this is the interactive component) and that they can freely rotate the chessboard
patterns (this is the animated component).

The animation principle corresponds to traditional Stop-motion technique. Each image is
continuously replaced by a new image with updated characteristics (such as colors, lengths,
angles, etc.). So it’s the principle paint – wipe – paint … For the viewers to be able to
interactively control the illusions, sliders are provided for the characteristic values. The
image then will be updated with them at the next repeat loop.

Conclusion and Outlook
When selecting suitable projects for the implementation of my approach, it helps to orient
them to existing examples. Citation, copying and alienation have long been part of an artistic
practice, the so-called "Appropriation Art“. On the one hand, this orientation helps to obtain
appealing and motivating images from the very beginning. On the other hand, they provide
suggestions to approach your own variants and developments.

The choice of Snap! as a development environment was not accidental under these
circumstances. Amongst other things it offers any stage sizes, assembling nested sprites, or
sending messages to individual sprites. For me personally it was important that I thus could
not only work playfully with it, but that serious products could be created. I created pictures
for exhibitions and multimedia festivals. Some versions of the optical illusions can serve as a
laboratory with which serious experiments can be replicated.

The application of my concept on other topics is quite possible. I am thinking of the
examination of architectural styles (see e.g. Schweiger, 1992). It is also obvious to model
simple dynamic systems or agent-based systems.

References
Brigs, J.R. (2012). Python for Kids: A Playful Introduction to Programming. San Francisco: No Starch Press
Brookshear, G. & Brylow, D. (2014). Computer Science: An Overview. Boston: Pearson
Ewin, C. (2017). Computers for Seniors. San Francisco: No Starch Press
Harvey, B. (1997). Computer Science Logo Style. Vol. 1: Symbolic Computing. London, England: The MIT

Press
Grabowski, S. & Nake, F. (2019). Algorithmische Kunst als Bildungsgegenstand. Gedanken zu einer

fachlichen Bildung über Fächer hinaus. MedienPädagogik: Zeitschrift für Theorie Und Praxis Der
Medienbildung, 33 (Medienpädagogik und Didaktik der Informatik), 76-101.

Lehrer, R., Erickson, J. & Connell, T. (1994): Learning by Designing Hypermedia Documents. In: Computers
in Schools, Vol.10 (1994), I. 1/2, 227 – 254

Modrow, E. (2018). Computer Science with Snap!. Scheden: emu-online. http://www.emu-
online.de/ComputerScienceWithSnap.pdf

Papert, S. (1980). Mindstorms. : children, computers, and powerful ideas. New York: Basic Books
Schweiger, P. (1992). Gotik in Pascal. München: Oldenbourg
Wedekind, J. (2018). Codierte Kunst – Kunst Programmieren mit Snap! Tübingen: self-published
Wedekind, J. (2019). Optische Täuschungen animieren für Dummies Junior. Eine Einführung mit Snap!

Weinheim: Wiley CH-Verlag
Wedekind, J. (in press). Logo Classics! Tübingen: self-published
Wehrli, U. (2003). Tidying Up Art. New York: Prestel
Zendler, A. & Spannagel, C. (2006). Zentrale Konzepte im Informatikunterricht: eine empirische

Grundlegung. Notes on Educational Informatics — Section A: Concepts and Techniques 2 (1): 1–21

